Optical/Optothermal trapping/Brownian motion
​​
-
Optothermal Revolution: Colloids in an Optical Ring Trap
arXiv:2409.16792 [arxiv]
​
-
Brownian Colloids in Optothermal Field: An Experimental Perspective
Applied Physics Letters, to appear (2024), arXiv:2408.15791 [arxiv]
​
-
Evanescent Optothermoelectric Trapping: Deeper Potentials at a Largescale
ACS Applied Optical Materials 2, 1872–1879 (2024) [arxiv]​
​
-
Emergence of Directional Rotation in an Optothermally Activated Colloidal System
ACS Photonics, 10, 11, 4006–4013 (2023) [arxiv]
​
Indian Journal of Pure & Applied Physics; 61, 589-600 (2023) [arxiv]
Optics Letters, 48, 2937-2940 (2023). [arxiv]
​
J. Phys. Photonics 2023, 5 (2), 022501. [arxiv]
ACS Photonics 2022, 9 (10), 3440–3449. [arxiv]
J. Phys. Chem. Lett. 2021, 12 (49), 11910–11918. [arxiv]
Soft Matter 2021, 17 (48), 10903–10909. [arxiv]
J. Phys.: Condens. Matter 2020, 32 (32), 324002. [arxiv]
Faraday Discuss. 2016, 186 (0), 95–106. [arxiv]
Nat Commun 2014, 5 (1), 4357. [arxiv]
Structured Light/Orbital angular momentum/optical vortex
​
1. Simultaneous Detection of Spin and Orbital Angular Momentum of Light through Scattering from a Single Silver Nanowire.
Laser & Photonics Reviews 2022, 2200049. [arxiv]
​
Appl. Phys. Lett. 2021, 119 (16), 161108. [arxiv]
​
Phys. Rev. A 2021, 103 (1), 013520. [arxiv]
​
4. Optical Orbital Angular Momentum Read-Out Using a Self-Assembled Plasmonic Nanowire.
ACS Photonics 2019, 6 (1), 148–153.
​
5. Spin-Hall Effect in the Scattering of Structured Light from Plasmonic Nanowire.
Opt. Lett., OL 2018, 43 (11), 2474–2477. [arxiv]
Light-assisted assembly and pattern formation in soft matter
​
1. Evanescent Optothermoelectric Trapping: Deeper Potentials at a Largescale
​
2. Large-Scale Optothermal Assembly of Colloids Mediated by a Gold Microplate.
J. Phys.: Condens. Matter 2020, 32 (32), 324002. [arxiv]
​​
3. Large-Scale Dynamic Assembly of Metal Nanostructures in Plasmofluidic Field.
Faraday Discuss. 2016, 186 (0), 95–106. [arxiv]
​​
Nat Commun 2014, 5 (1), 4357. [arxiv]
Single-molecule SERS fluctuations/statistical optics
​
J. Phys. Chem. Lett. 2021, 12 (49), 11910–11918. [arxiv]
​
Nat Commun 2014, 5 (1), 4357. [arxiv]
​
J. Phys. Chem. Lett. 2013, 4 (7), 1167–1171.
Nanowire Plasmonics/Photonics
​
1. Beaming Elastic and SERS Emission from Bent-Plasmonic Nanowire on a Mirror Cavity.
J. Phys. Chem. Lett. 2021, 12 (28), 6589–6595. [arxiv]
​
2. Momentum-Resolved Surface Enhanced Raman Scattering from a Nanowire–Nanoparticle Junction Cavity.
Advanced Optical Materials 2019, 7 (15), 1900304. [arxiv]
​
3. Doughnut-Shaped Emission from Vertical Organic Nanowire Coupled to Thin Plasmonic Film.
Opt. Lett., OL 2018, 43 (4), 923–926. [arxiv]
​
Nano Lett. 2018, 18 (1), 650–655.
​
5. Radiative Channeling of Nanowire Frenkel Exciton Polaritons through Surface Plasmons.
Advanced Optical Materials 2017, 5 (4), 1600873.
6. Plasmon-Controlled Excitonic Emission from Vertically-Tapered Organic Nanowires.
Nanoscale 2016, 8 (31), 14803–14808.
​
7. Dual-Path Remote-Excitation Surface Enhanced Raman Microscopy with Plasmonic Nanowire Dimer.
Appl. Phys. Lett. 2013, 103 (15), 151114.
​
J. Phys. D: Appl. Phys. 2013, 46 (19), 195107.
​
Appl. Phys. Lett. 2012, 101 (11), 111111.
​
Appl. Phys. Lett. 2012, 100 (4), 043108.
Microsphere photonics/Whispering Gallery Modes
​
1. Mirror-Coupled Microsphere Can Narrow the Angular Distribution of Photoluminescence from WS2 Monolayers.
Appl. Phys. Lett. 2022, 120 (26), 261109. [arxiv]
Materials Research Bulletin 2021, 142, 111412. [arxiv]
3. Dielectric Microsphere Coupled to a Plasmonic Nanowire: A Self-Assembled Hybrid Optical Antenna.
Advanced Optical Materials 2020, 8 (11), 1901672. [arxiv]
4. Wavevector Distribution of Metal Photoluminescence from a Gold Film Coupled Microsphere Antenna.
J. Opt. 2019, 21 (3), 035002. [arxiv]
5. Vectorial Fluorescence Emission from Microsphere Coupled to Gold Mirror.
Advanced Optical Materials 2018, 6 (22), 1801025. [arxiv]
Appl. Phys. Lett. 2013, 103 (3), 031112. [arxiv]